Skip to contents

This function perform a normalization on the data considering the fact that each shRNA has a defined length so this will not influence the data. Basically is computed the sum for each row and then multiply by 1e6. At the end the data obtained will be Count Per Million.

Usage

normalize_data(screenR_Object)

Arguments

screenR_Object

The ScreenR object obtained using the create_screenr_object

Value

Return the ScreenR object with the normalize data

Examples

object <- get0("object", envir = asNamespace("ScreenR"))
object <- normalize_data(object)

slot(object, "normalized_count_table")
#> # A tibble: 5,320 × 15
#>    Barcode    T1    T2 Time3_TRT_A Time3_TRT_B Time3_TRT_C Time3_A Time3_B
#>    <fct>   <dbl> <dbl>       <dbl>       <dbl>       <dbl>   <dbl>   <dbl>
#>  1 10208   330.  437.        365.        439.        311.    358.    425. 
#>  2 10502    26.2  34.6        20.5        59.5        16.7    49.3    17.4
#>  3 10796   141.  156.        164.        124.        132.    120.    121. 
#>  4 11089   356.  424.        336.        424.        375.    388.    346. 
#>  5 11382    67.2  65.7        82.6        36.9        26.3    58.4    65.4
#>  6 11675   687.  775.        722.        682.        669.    820.    797. 
#>  7 11969   455.  548.        623.        540.        558.    488.    438. 
#>  8 12263   144.  119.        112.        138.         95.0   158.    128. 
#>  9 12555   406.  413.        459.        518.        483.    408.    425. 
#> 10 12847    43.7  42.6        30.2        34.9        29.6    34.6    20.5
#> # ℹ 5,310 more rows
#> # ℹ 7 more variables: Time3_C <dbl>, Time4_TRT_A <dbl>, Time4_TRT_B <dbl>,
#> #   Time4_TRT_C <dbl>, Time4_A <dbl>, Time4_B <dbl>, Time4_c <dbl>